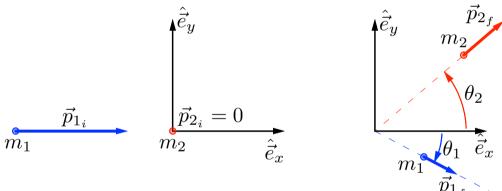


Physique Générale : Mécanique 07.02: Collisions en ligne, ou uni-dimensionnelles

Sections SC, GC & SIE , BA1

Dr. J.-P. Hogge

Swiss Plasma Center


École polytechnique fédérale de Lausanne

Version du 15.11.23

- Faculté
 des sciences
 de base
- SwissPlasmaCenter

Aujourd'hui

Collisions en ligne: sous-classe de collisions telles qu'une seule dimension suffit à les décrire: $\theta_1 = \theta_2 = 0$

Avantage: le problème n'est plus sous-determiné

- Faculté

 des sciences
 de base
- SwissPlasmaCenter

	Energie cinétique	Quantité de mouvement
Chocs élastiques	Conservée	Conservée
Chocs inélastiques	Non conservée	Conservée

[■] Faculté

des sciences

de base

Swiss Plasma Center

Collisions élastiques en ligne

$$\begin{cases} m_1v_1 + m_2v_2 &= m_1v_1' + m_2v_2' & \text{Conservation de la quantit\'e de mouvement} \\ m_1v_1^2 + m_2v_2^2 &= m_1v_1^{'2} + m_2v_2^{'2} & \text{Conservation de l'\'energie cin\'etique} \end{cases}$$

$$\begin{cases} m_1(v_1 - v_1') &= m_2(v_2' - v_2) \\ m_1(v_1^2 - v_1'^2) &= m_2(v_2'^2 - v_2^2) \end{cases}$$

$$v_1 + v_1' = v_2 + v_2' \implies \begin{cases} v_2' = v_1 + v_1' - v_2 \\ v_1' = v_2 + v_2' - v_1 \end{cases}$$

- Faculté

 des sciences
 de base
- Swiss
 Plasma
 Center

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_1 + m_2v_1' - m_2v_2$$

$$m_1v_1 - m_2v_1 + 2m_2v_2 = m_1v_1' + m_2v_1'$$

$$v_1' = \frac{(m_1 - m_2)}{(m_1 + m_2)} v_1 + \frac{2m_2}{(m_1 + m_2)} v_2$$

$$m_1v_1 + m_2v_2 = m_1v_2 + m_1v_2' - m_1v_1 + m_2v_2'$$
$$2m_1v_1 + (m_2 - m_1)v_2 = (m_1 + m_2)v_2'$$

$$v_2' = \frac{2m_1}{(m_1 + m_2)} v_1 + \frac{(m_2 - m_1)}{(m_1 + m_2)} v_2$$

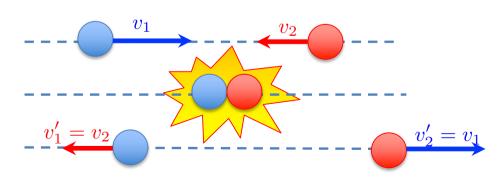
$$v_2' = \frac{2m_1}{(m_1 + m_2)} v_1 - \frac{(m_1 - m_2)}{(m_1 + m_2)} v_2$$

- Faculté des sciences de base
- Swiss
 Plasma
 Center

Cas particuliers

$$v_1' = \frac{(m_1 - m_2)}{(m_1 + m_2)} v_1 + \frac{2m_2}{(m_1 + m_2)} v_2$$

$$v_2' = \frac{2m_1}{(m_1 + m_2)} v_1 - \frac{(m_1 - m_2)}{(m_1 + m_2)} v_2$$


 $m_1 = m_2$

II vient : $v_1' = v_2$ $v_2' = v_1$

$$v_1' = v_2$$

$$v_2' = v_1$$

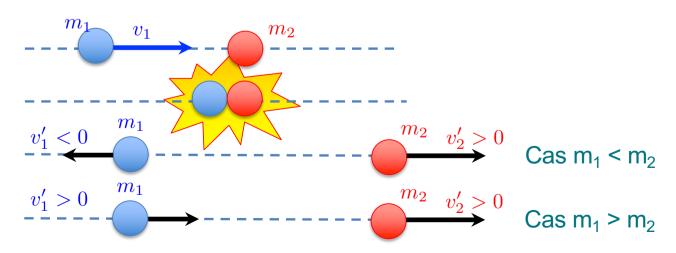
Les points matériels ont échangé leurs quantités de mouvement.

Cas particuliers

$$v_1' = \frac{(m_1 - m_2)}{(m_1 + m_2)} v_1 + \frac{2m_2}{(m_1 + m_2)} v_2$$

$$v_2' = \frac{2m_1}{(m_1 + m_2)} v_1 - \frac{(m_1 - m_2)}{(m_1 + m_2)} v_2$$

$$v_2' = \frac{2m_1}{(m_1 + m_2)} v_1 - \frac{(m_1 - m_2)}{(m_1 + m_2)} v_2$$

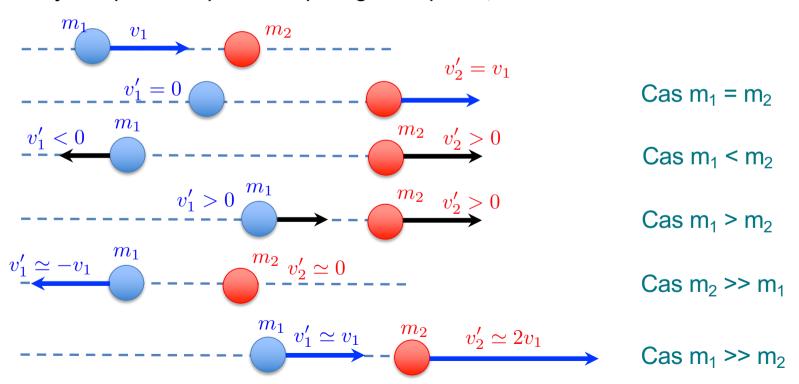

•
$$v_2 = 0$$

$$v_1' = \frac{(m_1 - m_2)}{(m_1 + m_2)} v_1$$
 $v_2' = \frac{2m_1}{(m_1 + m_2)} v_1$

$$v_2' = \frac{2m_1}{(m_1 + m_2)}v_1$$

Le signe de v'1 dépend des masses m₁ et m₂ v'2 est toujours positif et peut être plus grand que v'1

- Faculté des sciences de base
- Swiss Plasma Center


Cas particuliers: $v_2 = 0$

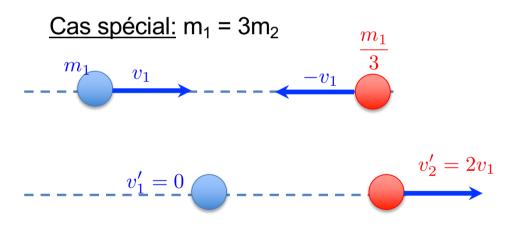
•
$$v_2 = 0$$

$$v_1' = \frac{(m_1 - m_2)}{(m_1 + m_2)} v_1$$
 $v_2' = \frac{2m_1}{(m_1 + m_2)} v_1$

$$v_2' = \frac{2m_1}{(m_1 + m_2)} v_1$$

Le signe de v'1 dépend des masses m₁ et m₂ v'₂ est toujours positif et peut être plus grand que v'₁

- Faculté des sciences de base
- Swiss Plasma Center



Cas particuliers: $v_2 = -v_1$

•
$$v_2 = -v_1$$

$$v_1' = v_1 \left(\frac{(m_1 - m_2)}{(m_1 + m_2)} - \frac{2m_2}{(m_1 + m_2)} \right) = \frac{m_1 - 3m_2}{m_1 + m_2} v_1$$

$$v_2' = v_1 \left(\frac{2m_1}{(m_1 + m_2)} + \frac{(m_1 - m_2)}{(m_1 + m_2)} \right) = \frac{3m_1 - m_2}{m_1 + m_2} v_1$$

■ Faculté est réfléchie avec le double de sa des sciences

Swiss Plasma Center

de base

La première balle s'arrête, la seconde vitesse initiale

Cas similaire 4 balles: Seismic accelerator

Si les masse des balles sont bien choisies, la balle rouge rebondit avec 4 fois sa vitesse initiale

Collisions inélastiques en ligne

Définition: Coefficient de restitution.

Rapport entre les vitesses relatives après et avant le choc

$$e = \frac{v_2' - v_1'}{v_1 - v_2}$$

$$v_1 - v_2 = \frac{d}{dt} (x_1(t) - x_2(t))$$

Vitesse avec laquelle les 2 objets s'approchent l'un de l'autre avant la collision. Vitesse d'approche

$$v_2' - v_1' = \frac{d}{dt} (x_2'(t) - x_1'(t))$$

Vitesse avec laquelle les 2 objets s'éloignent l'un de l'autre après la collision. Vitesse d'éloignement

Propriétés:

e < 1

Collision inélastique avec perte d'énergie cinétique

e = 1

Collision élastique

des sciences de base e > 1

Collision inélastique avec gain d'énergie cinétique

■ Faculté

Collisions inélastiques en ligne

Démonstration que e<1 pour une collision inélastique avec perte d'énergie cinétique

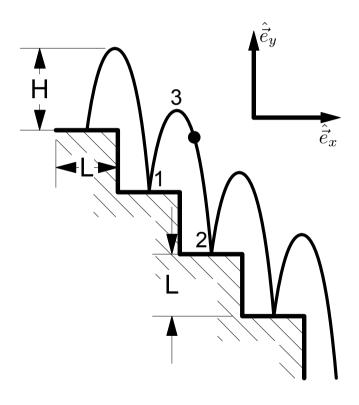
$$\begin{cases} m_1v_1'+m_2v_2' &= m_1v_1+m_2v_2 & \text{Conservation de la quantité de mouvement} \\ m_1v_1^{'2}+m_2v_2^{'2} &< m_1v_1^2+m_2v_2^2 & \text{Cas de la perte d'énergie cinétique} \end{cases}$$

On réarrange

$$\begin{cases}
 m_2(v_2' - v_2) &= m_1(v_1 - v_1') \\
 m_2(v_2^{'2} - v_2^2) &< m_1(v_1^2 - v_1^{'2})
\end{cases}$$

On divise la seconde equation par la première

$$v_2' + v_2 < v_1 + v_1'$$


$$v_2' - v_1' < v_1 - v_2$$

$$\frac{v_2' - v_1'}{v_1 - v_2} < 1$$

[■] Faculté des sciences de base

$$v_2 = v_2' = 0$$

 $|v_1'| < |v_1|$

e < 1

- Faculté

 des sciences

 de base
- Swiss
 Plasma
 Center